TOTAL \(k \)-DISTANCE DOMINATION CRITICAL GRAPHS

D.A. MOJDEH, A. SAYED-KHALKHALI, H. ABDOLLAHZADEEH AHANGAR, AND Y. ZHAO

Abstract. A set \(S \) of vertices in a graph \(G = (V, E) \) is called a total \(k \)-distance dominating set if every vertex in \(V \) is within distance \(k \) of a vertex in \(S \). A graph \(G \) is total \(k \)-distance domination-critical if \(\gamma_k^t(G - x) < \gamma_k^t(G) \) for any vertex \(x \in V(G) \). In this paper, we investigate some results on total \(k \)-distance domination-critical of graphs.

1. Introduction

The terminology and notation in \[3\] will be used throughout. The distance \(d_G(u, v) \) between two vertices \(u \) and \(v \) of \(G \) is the length of the shortest \(u-v \) path if such path exists, otherwise \(d_G(u, v) = \infty \). The open \(k \)-neighborhood \(N_k(X) \) of a subset \(X \subseteq V(G) \) is the set of vertices in \(V(G) - X \) of distance at most \(k \) from each element of \(X \) and the closed \(k \)-neighborhood is defined by \(N_k[X] = N_k(X) \cup X \). If \(X = \{v\} \) is a single vertex, then we denote the (closed) \(k \)-neighborhood of \(v \) by \(N_k(v) \) (\(N_k[v] \), respectively). The (closed) 1-neighborhood of a vertex \(v \) or a set \(X \) of vertices is usually denoted \(N(v) \) or \(N(X) \), respectively (\(N[v] \) or \(N[X] \), respectively). The minimum \(k \)-degree \(\delta_k(G) \) equals \(\min\{|N_k(v)| : v \in V\} \), while the maximum \(k \)-degree \(\Delta_k(G) \) equals \(\max\{|N_k(v)| : v \in V\} \). For a set \(S \subseteq V(G) \), we denote the subgraph of \(G \) induced by \(S \) by \((S) \). The \(k \)-th power of a graph \(G \) is the graph \(G^k \) with vertex set \(V(G^k) = V(G) \) and edge set \(E(G^k) = \{xy : 1 \leq d_G(x, y) \leq k\} \).

Given \(k \leq n \), place \(n \) vertices around a circle, equally spaced. If \(k \) is even, form the Harary graph \(H_{k,n} \) by making each vertex adjacent to the nearest \(k/2 \) vertices in each direction around the circle, \[12\]. It is well known that every \(m \)-th power of a cycle \(C_n \) with \(n \) vertices \(C_{mn}^n \) is \(H_{2m,n} \).

The circulant graph \(C(n; M) \) is the graph with the vertex set \(V(C(n; M)) = \{v_i|0 \leq i \leq n - 1\} \) and the edge set \(E(C(n; M)) = \{v_iv_j|0 \leq i \leq n - 1, 0 \leq j \leq n - 1, (i - j)(mod n) \in M\} \), \(M \subseteq \{1, 2, \ldots, \lfloor n/2 \rfloor\} \), \[11\][12].

MSC(2010): Primary: 05C69. Keywords: Distance domination, total \(k \)-distance dominating set, total \(k \)-distance domination-critical.

Received: dd mmmm yyyy, Accepted: dd mmmm yyyy.
The dominating set (total dominating set) \(D \) of a graph \(G \) is a set of vertices of \(G \) such that every vertex of \(V(G) - D \) (respectively, \(V(G) \)) is adjacent to some vertex of \(D \). The domination number \(\gamma(G) \) (total domination number \(\gamma_t(G) \)) of \(G \) is the minimum cardinality of a dominating set (total dominating set) of \(G \).

A subset \(S \subseteq V(G) \) is a \(k \)-distance dominating set if every vertex in \(V - S \) is within distance \(k \) of at least one vertex in \(S \) for integers \(k > 1 \). That is \(N_k[S] = V(G) \). A subset \(S \subseteq V(G) \) is a total \(k \)-distance dominating set (TkDDS for short) if every vertex \(u \in V(G) \) is within distance \(k \) from at least one vertex in \(S \) other than itself. The minimum cardinality of a (total) distance \(k \)-dominating set in \(G \) is the (total) distance \(k \)-domination number of \(G \), denoted by \(\gamma^k(G) \) (\(\gamma_t^k(G) \), respectively). Any TkDDS of cardinality \(\gamma_t^k(G) \) is called a \(\gamma_t^k \)-set of \(G \), \cite{4}.

2. Preliminary results

By the definitions of TkDDS and \(G^k \) it immediately follows:

Observation 2.1. Let \(G \) be a nontrivial connected graph. Then a set \(D \subseteq V(G) \) is a TkDDS of \(G \) if and only if \(D \) is a total dominating set of \(G^k \).

Corollary 2.2. Each \(\gamma_t \)-set of \(G^k \) is a \(\gamma_t^k \)-set of \(G \) and vice versa, that is, \(\gamma_t^k(G) = \gamma_t(G^k) \).

An end-vertex is a vertex of degree one and a support vertex is one that is adjacent to an end-vertex. Let \(S(G) \) be the set of support vertices of \(G \). We say that a vertex \(v \in V(G) - S(G) \) is a \(\gamma_t^k \)-critical if \(\gamma_t^k(G - v) < \gamma_t^k(G) \).

Observation 2.3. Let \(v \) be a \(\gamma_t^k \)-critical vertex of a graph \(G \). Then:

(i) Each vertex of \(N_k(v) \) is not in any \(\gamma_t^k \)-set of \(G - v \);

(ii) if \(T \) is a \(\gamma_t^k \)-set of \(G - v \), then \(T \cup \{u\} \) is a \(\gamma_t^k \)-set of \(G \) for every \(u \in N_k(v) \);

(iii) \(\gamma_t^k(G) = \gamma_t^k(G - v) + 1 \).

Proof. (i) If each vertex of \(N_k(v) \) is in any \(\gamma_t^k \)-set of \(G - v \), then \(\gamma_t^k(G - v) \geq \gamma_t^k(G) \), a contradiction.

(ii) and (iii) If \(T \) is a \(\gamma_t^k \)-set of \(G - v \) and \(u \in N_k(v) \), then \(T \cup \{u\} \) is a TkDDS of \(G \) and \(|T \cup \{u\}| = \gamma_t^k(G - v) + 1 \leq \gamma_t^k(G) \). Thus \(\gamma_t^k(G) = \gamma_t^k(G - v) + 1 \) and \(T \cup \{u\} \) is a \(\gamma_t^k \)-set of \(G \). \(\square \)

Since total domination may not be defined for a graph with isolated vertices, we say that a graph \(G \) is total \(k \)-distance domination vertex critical, or just \(\gamma_t^k \)-critical, if every vertex of \(V(G) - S(G) \) is a \(\gamma_t^k \)-critical vertex. If \(G \) is \(\gamma_t^k \)-critical, and \(\gamma_t^k(G) = r \), then we say that \(G \) is \(r \)-\(\gamma_t^k \)-critical. Note that a graph is vertex \(\gamma_t^k \)-critical if and only if each its component is \(\gamma_t^k \)-critical.

Corollary 2.4. If \(G \) is a connected \(\gamma_t^k \)-critical graph, then \(\gamma_t^k(G - v) = \gamma_t^k(G) - 1 \) for any \(v \in V(G) - S(G) \).

Proposition 2.5. Let \(G \) be a graph.
Proof. The case of \(k = 1 \) is trivial, so we assume that \(k \geq 2 \).

(i) Since \(v \) is \(\gamma^k_t \)-critical, \(\gamma^k_t(G-v) = \gamma^k_t(G) - 1 \). By Corollary 2.2, \(\gamma^k_t(G-v) = \gamma_t((G-v)^k) \) and \(\gamma^k_t(G) = \gamma_t(G^k) \). Since the total domination number does not increase when edges are added to a graph and since \((G-v)^k \) is a spanning subgraph of \(G^k-v \), it follows that \(\gamma_t((G-v)^k) \geq \gamma_t(G^k-v) \). Thus \(\gamma_t(G^k-v) \leq \gamma^k_t(G-v) = \gamma^k_t(G) - 1 = \gamma_t(G^k) - 1 \).

(ii) Since \(v \) is a \(\gamma_t \)-critical vertex of \(G^k \), \(\gamma_t(G^k-v) = \gamma_t(G^k) - 1 = \gamma^k_t(G) - 1 \) and no neighbor of \(v \) in \(G^k \) belongs to some \(\gamma_t \)-set of \(G^k-v \). Hence each \(\gamma_t \)-set of \(G^k-v \) is a total dominating set of \((G-v)^k \) which implies \(\gamma_t(G^k-v) \geq \gamma_t((G-v)^k) \). Since always \(\gamma_t(G^k-v) \leq \gamma_t((G-v)^k) \), the equality \(\gamma_t(G^k-v) = \gamma_t((G-v)^k) \) holds. Thus \(\gamma^k_t(G) - 1 = \gamma^k_t(G-v) \) as required. \(\square \)

Corollary 2.6. Let \(G \) be a graph with \(\delta(G) \geq 2 \). Then \(G \) is \(\gamma^k_t \)-critical if and only if \(G^k \) is \(\gamma_t \)-critical.

3. Total \(k \)-distance domination

We start this section with an important result from [2].

Theorem 3.1. [2] Let \(G \) be a \(\gamma_t \)-critical graph of order \(n \). Then \(n \leq \Delta(G)(\gamma_t(G) - 1) + 1 \).

In what follows, for any vertex \(v \) in \(G \), \(S_v \) denotes a total \(k \)-distance dominating set of the subgraph \(G_v = G - v \) with minimum size, and \(S_v^u \) denotes the set \(S_v \cup \{u\} \) for \(u \in V(G) \).

Theorem 3.2. Let \(G \) be a \(\gamma^k_t \)-critical graph of order \(n \). Then \(n \leq \Delta_k(G)(\gamma^k_t(G) - 1) + 1 \).

Proof. Let \(v \in V(G) - S(G) \). Total criticality of \(G \) implies that there exists a \(S_v \) with \(|S_v| = \gamma^k_t(G) - 1 \) for \(G_v \). Since each vertex of \(S_v \) can \(k \)-distance dominate at most \(\Delta_k(G) \) vertices, \(S_v \) can \(k \)-distance dominate at most \(\Delta_k(G)(\gamma^k_t(G) - 1) \) vertices, which implies that \(n = |V(G_v)| + 1 \leq \Delta_k(G)(\gamma^k_t(G) - 1) + 1 \). \(\square \)

In [7] it has been given the result:

Theorem 3.3. ([7], Theorem 1) Any \(\gamma_t \)-critical graph \(G \) of order \(n = \Delta(G)(\gamma_t(G) - 1) + 1 \) is regular.

One can have the following which shows that Theorem 3.3 cannot be generalized for total \(k \)-distance domination of \(G \).

Theorem 3.4. There is no \(\gamma^k_t \)-critical graph of order \(n = \Delta_k(G)(\gamma^k_t(G) - 1) + 1 \).

Proof. Let \(G \) be a \(k - \gamma^k_t \)-critical graph of order \(\Delta_k(G)(\gamma^k_t(G) - 1) + 1 \). So \(G^k \) is a \(k - \gamma_t \)-critical graph of order \(\Delta_{G^k}(k-1) + 1 \). Let \(v \in G^k \) and \(S_v \) is a \(\gamma_t(G^k-v) \)-set. Then \(S_v \) is an efficient total dominating set for \(G^k-v \) and no neighbor of \(v \) is in \(S_v \). Hence in \(G^k \) each edge belongs to triangles, there is at least one vertex \(u \in G^k \) such that \(|N_{G^k}(u) \cap S_v| \neq 1 \). Therefore by above assumptions, the bound \(\Delta(G^k)(\gamma_t(G^k) - 1) + 1 \) is not attainable. \(\square \)
Combining of Theorems 3.2 and 3.4 we have the following corollary:

Corollary 3.5. If G is a γ_t^k-critical graph of order n, then $n \leq \Delta_k(G)(\gamma_t^k(G) - 1)$.

We need the results from [10] and [2].

Lemma 3.6. [10] For each $k \geq 1$, if the vertices x and y are two vertices in G such that $\rho_G(x, y) = d(G)$, then $d_{G_k}(x, y) = d(G^k)$. Furthermore, $d(G^k) = \lceil \frac{d(G)}{k} \rceil$.

Theorem 3.7. [2] For $m \leq 8$, the diameter of a m-γ_t-critical graph is at most the value given by the following table:

<table>
<thead>
<tr>
<th>m</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{iam}</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

A generalization of Lemma 3.6 and Theorem 3.7 is the next result.

Proposition 3.8. If G is an m-γ_t^k-critical graph for $m \leq 8$, then $d(G) \leq 11k$.

Proof. Using Lemma 3.6 and Theorem 3.7, we have $\frac{d(G)}{k} \leq d(G^k) \leq 11$. \(\square\)

Example 3.9. For $n \leq 7$, $\gamma_t^2(C_n) = \gamma_t^2(P_n) = 2$, and for $n \geq 8$, $\gamma_t^2(C_n) = \gamma_t^2(P_n) = \lceil \frac{n}{2} \rceil + \lceil \frac{n-1}{7} \rceil - 1$ if $n \equiv 2 \pmod{7}$ and $\gamma_t^2(C_n) = \gamma_t^2(P_n) = \lceil \frac{n}{2} \rceil + \lceil \frac{n-1}{7} \rceil$ otherwise.

Example 3.10. $\gamma_t^3(C_n) = \gamma_t^3(P_n) = \lceil \frac{n}{3} \rceil + 1$ if $n = 10k + 4$, and $\gamma_t^3(C_n) = \gamma_t^3(P_n) = \lceil \frac{n}{3} \rceil$ otherwise.

We have the result from [6] that is useful for other results.

Theorem 3.11. ([6], Theorem 13) Let $H_{2m,n}$ be a Harary graph with n vertices and $n = (3m+1)l+r$, where $0 \leq r \leq 3m$. Then

$$\gamma_t(H_{2m,n}) = \begin{cases} 2l & \text{if } r = 0 \\ 2l + 1 & \text{if } 1 \leq r \leq m \\ 2l + 2 & \text{if } m + 1 \leq r \leq 3m. \end{cases}$$

Now using Theorem 3.11 to follow the following result.

Theorem 3.12. $H_{2k,n}$ is γ_t-critical if and only if $3k + 1 \mid n - 1$ or $3k + 1 \mid n - (k + 1)$.

Proof. Corollary 2.2 and Theorem 3.11 imply that $\gamma_t^k(C_n) = \gamma_t^k(C_n) = \gamma_t(H_{2k,n})$. Now we show that $H_{2k,n}$ is γ_t-critical if and only if $3k + 1 \mid n - 1$ or $3k + 1 \mid n - (k + 1)$.

It is easy to see that, two adjacent vertices dominate at most $3k+1$ vertices and three adjacent vertices dominate at most $4k+1$ vertices. Let $n = (3k+1)l+r$ where $0 \leq r \leq 3k$. If $r = 0$, then $\gamma_t(H_{2k,n}) = 2l$. Now consider v as any vertex and $H_{2k,n} - v$ then the size of $H_{2k,n} - v$ is $(3k+1)(l-1) + 3k$. This shows $\gamma_t(H_{2k,n} - v) = 2l$, it is not critical, for $n = 3k + 1)l$.

If \(r = 1 \), then \(\gamma_t(H_{2k,n}) = 2l + 1 \). Now consider \(H_{2k,n} - v_n \) (note that all vertices play same role), then the set

\[
S = \{ v_{k+1}, v_{2k+1}, v_{4k+2}, v_{5k+2}, \ldots, v_{(3l-5)k+l}, v_{(3l-4)k+l}, v_{(3l-2)k+l}, v_{(3l-1)k+l} \}
\]

is a total dominating set of \(H_{2k,n} - v_n \) with size \(|S| = 2l \). Thus \(H_{2k,n} \) for \(n = (3k+1)l + 1 \) is total critical.

Let \(2 \leq r \leq k \). Then \(\gamma_t(H_{2k,n}) = 2l + 1 \). Since \(2l \) vertices totally dominate at most \((3k+1)l \) vertices and for \(2 \leq r \leq k \) the graph \(H_{2k,n} - v \) has at least \((3k+1)l + 1 \) vertices, then \(\gamma_t(H_{2k,n} - v) = 2l + 1 \). Therefore \(H_{2k,n} \) is not total critical, where \(n = (3k+1)l + r \) and \(2 \leq r \leq k \).

Let \(r = k + 1 \). Then \(\gamma_t(H_{2k,n}) = 2l + 2 \). Same as above consider \(H_{2k,n} - v_n \), then the set vertex

\[
S = \{ v_{k+1}, v_{2k+1}, v_{4k+2}, v_{5k+2}, \ldots, v_{(3l-5)k+l}, v_{(3l-4)k+l}, v_{(3l-2)k+l}, v_{(3l-1)k+l}, v_{(3l)k+l} \}
\]

is a total dominating set of \(H_{2k,n} - v_n \) with size \(|S| = 2l + 1 \). Thus \(H_{2k,n} \) for \(n = (3k+1)l + k + 1 \) is total critical.

Let \(k + 2 \leq r \leq 3k \). Then \(\gamma_t(H_{2k,n}) = 2l + 2 \). Since \(2l + 1 \) vertices totally dominate at most \((3k+1)l + k \) vertices and for each \(v \), \(H_{2k,n} - v \) has at least \((3k+1)l + k + 1 \) vertices. And so \(\gamma_t(H_{2k,n} - v) = 2l + 2 \). Thus \(H_{2k,n} \) for \(n = (3k+1)l + r \) for \(k + 2 \leq r \leq 3k \) is not total critical. Therefore the proof is complete.

From Theorem 3.12 for \(H_{2k,n} \) where \(3k + 1 \mid n - 1 \) or \(3k + 1 \mid n - (k + 1) \) we have \(n < \Delta(G)(\gamma_t(G) - 1) + 1 \). This result shows that the converse of Theorem 3.1(ii) is not true.

As an immediate result from Theorems 3.11 and 3.12 we have:

Proposition 3.13. Let \(C_n \) be a cycle with \(n \) vertices and \(n = (3k + 1)l + r \), where \(0 \leq r \leq 3k \). Then

\[
\gamma_t^k(C_n) = \begin{cases}
2l & \text{if } r = 0 \\
2l + 1 & \text{if } 1 \leq r \leq k \\
2l + 2 & \text{if } k + 1 \leq r \leq 3k.
\end{cases}
\]

(ii) \(C_n \) is \(\gamma_t^k \)-critical if and only if \(3k + 1 \mid n - 1 \) or \(3k + 1 \mid n - (k + 1) \).

Proof. By Corollary 2.2 \(\gamma_t^k(C_n) = \gamma_t(C_n^k) \). Since \(C_n^k = H_{2k,n} \), (i) holds by Theorem 3.11 and (ii) holds by Theorem 3.12.

Observation 3.14. There is no \(\gamma_t^k \)-critical graph with \(\Delta_k = 2 \).

Proof. Let \(G \) be a \(\gamma_t^k \)-critical graph with \(\Delta_k = 2 \) and \(x \in V(G) \). Since \(\Delta_k = 2 \), \(\deg(x) \leq 2 \). Therefore \(G \) is \(P_2, P_3 \) or \(C_3 \) and none of them is \(\gamma_t^k \)-critical graph.

Proposition 3.15. Let \(G \) be a corona of \(G' \) with \(\delta(G') \geq 2 \). Then \(G \) is \(\gamma_t \)-critical, and for \(k \geq 2 \), \(G \) is not necessary \(\gamma_t^k \)-critical.
Proof. It is clear that $\gamma_t(G) = |V(G')|$. If v is a vertex in $V(G) \setminus S(G)$, then $\gamma_t(G - v) = |V(G')| - 1$.

For $k \geq 2$, let $G' = K_n$ ($n \geq 3$) and G be corona of K_n. Then $\gamma_t^k(G) = \gamma_t^k(G - v)$ for $k \geq 2$. □

Theorem 3.16. If G has a cut vertex, and G is not corona of a graph G' with $\delta(G') \geq 2$, then G is not a γ_t^k-critical graph with $k \geq 1$.

Proof. Let u be a cut vertex of G such that $u \not\in S(G)$, and $G - u$ has two components, say G_1 and G_2. Suppose on the contrary that G is a γ_t^k-critical graph and S is a γ_t^k-set for G. Let S_1 and S_2 be the γ_t^k-set for G_1 and G_2. Let $n_1 = |S \cap G_1|$ and $n_2 = |S \cap G_2|$. Since G is a γ_t^k-critical graph, $\gamma_t^k(G - u) = \gamma_t^k(G_1) + \gamma_t^k(G_2)$, and then we will have $\gamma_t^k(G) = \gamma_t^k(G_1) + \gamma_t^k(G_2) + 1$.

If $u \in S$, one of the followings holds:

(i) $n_1 = \gamma_t^k(G_1)$, $n_2 = \gamma_t^k(G_2)$;
(ii) $n_1 > \gamma_t^k(G_1)$, $n_2 < \gamma_t^k(G_2)$;
(iii) $n_1 < \gamma_t^k(G_1)$, $n_2 > \gamma_t^k(G_2)$.

Remove the vertex u from γ_t^k-set. It is easy to see that G can be total k-distance dominated by $S_1 \cup S_2 \cup \{x\}$, where $x \in N_k(u)$, a contradiction.

Let now that $u \not\in S$. We have one of the followings:

(a): $n_1 = \gamma_t^k(G_1)$, $n_2 > \gamma_t^k(G_2)$;
(b): $n_1 > \gamma_t^k(G_1)$, $n_2 = \gamma_t^k(G_2)$;
(c): $n_1 < \gamma_t^k(G_1)$, $n_2 > \gamma_t^k(G_2)$;
(d): $n_1 > \gamma_t^k(G_1)$, $n_2 < \gamma_t^k(G_2)$.

Case (a): It is obvious that $n_2 = \gamma_t^k(G_2) + 1$. Suppose G_1 and G_2 are γ_t^k-critical graphs. Let $x \in N_k(u) \cap G_1$ and $y \in N_k(u) \cap G_2$. Let S_x, S_y be the γ_t^k-set for $G_1 - x$ and $G_2 - y$. Let $S' = S_x \cup S_y \cup \{u, v\}$, for which $v \in N_u$. It is easy to check that S' is a γ_t^k-set for G with $\gamma_t^k(G_1) + \gamma_t^k(G_2)$ elements, a contradiction. Thus at most one component is γ_t^k-critical graph. Without lose of generality assume that G_1 is γ_t^k-critical graph. For $k = 1$, let $x \in G_1$ be a vertex with distance two from u.

We can total dominate G with $S_x \cup S_2 \cup \{y\}$ where $y \in N(x) \cap N(u)$ and S_x is total dominating set for $G_1 - x$, a contradiction. If $k \geq 2$ let $x \in N_k(u)$ and $y \in N_k(u) \cap N_k(x)$, we can total k-distance dominate G with $S_x \cup S_2 \cup \{y\}$ where S_x is γ_t^k-set for $G_1 - x$ with $\gamma_t^k(G_1) + \gamma_t^k(G_2)$ elements, a contradiction. So suppose both of G_1 and G_2 are not γ_t^k-critical graphs. Let $x \in G_2$. Since G_2 is not γ_t^k-critical graph, one of the following holds:

(a-1) $\gamma_t^k(G_2 - x) = \gamma_t^k(G_2)$;
(a-2) $\gamma_t^k(G_2 - x) > \gamma_t^k(G_2)$;
(a-3) $\gamma_t^k(G_2 - x) < \gamma_t^k(G_2)$.

In Case (a-1), if $\gamma_t^k(G_2 - x) = \gamma_t^k(G_2)$, then $\gamma_t^k(G - x) = \gamma_t^k(G_1) + \gamma_t^k(G_2)$, a contradiction.

In Case (a-2), if $\gamma_t^k(G_2 - x) > \gamma_t^k(G_2)$, then $\gamma_t^k(G - x) \geq \gamma_t^k(G_1) + \gamma_t^k(G_2) + 1$, a contradiction.

In Case (a-3), if $\gamma_t^k(G_2 - x) < \gamma_t^k(G_2)$, then $\gamma_t^k(G_2 - x) = \gamma_t^k(G_2) - 1$. Let S_2 be a γ_t^k-set for $G_2 - x$ and $y \in N_k(x) \cap N_k(u)$. It is easy to see that $S_x \cup S_1 \cup \{y\}$ is a γ_t^k-set for G with $\gamma_t^k(G_1) + \gamma_t^k(G_2)$ elements, a contradiction.
Case (c): $n_1 < \gamma^k_t(G_1), n_2 > \gamma^k_t(G_2)$. If G_2 is γ^k_t-critical. Since $n_1 < \gamma^k_t(G_1)$, so some vertices of G_1 are k-distance dominated by elements of G_2. There is at least one vertex of G_2 which k-distance dominates some vertices of G_1. Let $s_1 \in S \cap G_2$ that k-distance dominate some vertices of G_1. Let S_{s_1} be a γ^k_t-set for $G_2 - s_1$ with $\gamma^k_t(G_2) - 1$ elements and $S_1 := S \cap G_1$ with n_1 elements. It is clear that $S_{s_1} \cup S_1 \cup \{u, s_1\}$ is a γ^k_t-set for G with $\gamma^k_t(G_2) + n_1 + 1$ elements which is less than $\gamma^k_t(G_1) + \gamma^k_t(G_2) + 1$, a contradiction. If G_2 is not γ^k_t-critical graph, then there is a vertex $x \in G_2$ such that $\gamma^k_t(G_2 - x) \geq \gamma^k_t(G_2)$. Therefore $\gamma^k_t(G - x) \geq \gamma^k_t(G)$, a contradiction.

Case (d): It is similar to Case (c). □

From Theorem 3.16 we have:

Corollary 3.17. If T is a tree with size $n \geq 3$, then T is not γ^k_t-critical graph.

4. On the equivalence of a conjecture

Mojdeh et al., in [7] conjectured: for $r \geq 6$, there is no 3-γ_t-critical r-regular graph of order $2r + 1$, that has been disproved by J. Rad et al., in [5]. Afterward it was also studied more by Sohn et al., in [9] and Wang et al, in [11]. Authors of [5] and [11] showed:

Theorem 4.1. ([5][11], Theorems 2.2, 2.1) For any even $r \geq 6$, if $M_r = \{2k - 1 : 1 \leq k \leq r/2\}$. The circulant graphs $G_r = C(2r + 1; M_r)$ are 3-γ_t-critical graphs of order $2r + 1$.

In this section we study a similar result on power k of G, that is, we wish to study this problem when $\Delta_k(G) \geq 6$:

Theorem 4.2. For any even $k \geq 2$, there is a 3-γ^k_t-critical graph of order $3\frac{\Delta_t(G)}{2} + 2$.

Proof. Let C_n be a cycle with size $n = 3k + 2$. Then C^k_n is a Harary graph $G = H_{2k,n}$. Since $n = 3k + 2 = (3k + 1) + 1$, from Theorem 3.12 $H_{2k,n}$ is a 3-γ_t-critical graph of order $n = 3k + 2$. Therefore from Proposition 3.13 C_n is a 3-γ^k_t-critical graph of order $3\frac{\Delta_t(G)}{2} + 2$. □

Also in [5] we have

Theorem 4.3. ([5], Theorem 2.1) A graph G of order 9 is 3-γ_t-critical if and only if $G = F$, where F be the graph with vertex set \{x, y, z, v_1, v_2, v_3, v_4, v_5, v_6\} and edge set \{xv_i : i = 1, 2, 3, 4\} ∪ \{v_1v_3, v_1v_5, v_1y, v_1v_6, v_2y, v_2v_6, v_3v_5, v_3z, v_4v_5, v_4z, v_4v_6, v_5y, yz, zv_6\}.

We can have corresponding result here.

Theorem 4.4. There is no 3-γ^k_t-critical graph with $\delta_k = \Delta_k = 4$ of order 9.
Proof. Let G be a $3\-_{\gamma^k}$-critical graph of order 9 with $\delta_k = \Delta_k = 4$. Then G^k should be a $3\-_{\gamma^l}$-critical 4-regular graph of order 9. Since with Theorem 4.3 the only $3\-_{\gamma^l}$-critical graph of order 9 is F, so $G^k = F$. In F two vertices z and y are adjoint, therefore in G we should have $N_k(y) \cap N_k(z) \neq \emptyset$, but in F we have $N(y) \cap N(z) = \emptyset$, a contradiction. □

Now we can pose a conjecture as follows:

Conjecture. For $\Delta_k(G) \geq 6$, there is no $3\-_{\gamma^k}$-critical graph of order $2\Delta_k(G) + 1$.

we have followings from [8] and [9] respectively.

Theorem 4.5. ([8] Theorem 3.6) There is no $3\-_{\gamma^l}$-critical graph of order $\Delta(G) + 3$ with $\Delta(G) = 3, 5$ and $\delta(G) \geq 2$.

Theorem 4.6. ([8] Theorem 12) There is no $4\-_{\gamma^l}$-critical graph G of order $\Delta(G) + 4$ with $\Delta(G) = 3, 5, 7$ and $\delta(G) \geq 2$.

Now we have corresponding results for power graph.

Theorem 4.7. (i) There is no $3\-_{\gamma^k}$-critical graph of order $\Delta_k(G) + 3$ with $\Delta_k(G) = 3, 5$ and $\delta_k(G) \geq 2$.

(ii) There is no $4\-_{\gamma^k}$-critical graph of order $\Delta_k(G) + 4$ with $\Delta_k(G) = 3, 5, 7$ and $\delta_k(G) \geq 2$.

Proof. (i) Suppose on the contrary, there is a graph G which is $3\-_{\gamma^k}$-critical with the given properties. Then G^k is a $3\-_{\gamma^l}$-critical graph of order $\Delta(G^k) + 3$ with $\Delta(G^k) = 3, 5$ and $\delta(G^k) \geq 2$, a contradiction.

(ii). This item has similar proof and it is left. □

To close of this paper, we pose the following problem:

Problem. How do we can generalize the properties of γ^l-criticality of a graph G to the γ^k-criticality of G?

Acknowledgments

The authors thank the referee for his/her helpful comments and suggestions to improve the exposition and readability of the paper.

References

First Author
Department of Mathematics, University of Mazandaran Babolsar, Iran
Department of Mathematics, University of Tafresh Tafresh, Iran
Email: damojdeh@umz.ac.ir

Second Author
Department of Mathematics, University of Tafresh Tafresh, Iran
Email: a.s.khalkhali@gmail.com

Third Author
Department of of Basic Science, Babol University of Technology Babol, Iran
Email: ha.ahangar@nit.ac.ir

Forth Author
Department of Basic Science, Wuxi City College of Vocational Technology Jiangsu 214153, China
Email: zhaoyc69@126.com